
Fast graph similarity search and motif mining via locality
sensitive hashing

Agnishom Chattopadhyay, Nicolae Sapoval
Rice University, Houston, TX 77005

1 Abstract

Motivation. Graphs are ubiquitous throughout many application areas of computer science including
computer systems (network topologies), programming languages and program design, and bioinformatics
(assembly graphs [1, 2], interaction and coexistence networks). Two common tasks that arise in the com-
putational analyses of graphs are graph structure comparison and motif mining. Both of these tasks are
computationally hard in their exact forms (e.g. the graph isomorphism problem is quasipolynomial and
the subgraph isomorphism problem is NP-hard), therefore motivating the need for approximate methods
that can achieve high accuracy at lower computational costs.

Problem statement. We are aiming to address two problems in our work. (1) Given a database
of graphs D = {G1, ..., GN} and a query graph G return a subset T ⊆ D of the nearest neighbors Gi
to G under some fixed graph distance metric. (2) Given a single graph G and a query graph Q, with
|V(Q)| � |V(G)|, determine with high probability if Q occurs as a subgraph (or induced subgraph) of G
and estimate the count of its occurrences.

Prior approaches. For efficient estimation of pairwise graph similarity, the concept of graph kernels
has been introduced [3]. There are several major categories of graph kernels that are based on random
walks, motif counts [4, 5], and subtree patterns [6]. In the setting described in (1), one can leverage
fast graph kernels and a set of discriminating graph samples from the database D (called prototypes) to
provide an embedding from the space of graphs G into Rn and subsequently use locality sensitive hashing
to perform efficient similarity queries with respect to the database D [7].

Study goals. Given the two outlined problems and the prior work done in the area the aims of our
study are threefold.

1. We plan to investigate impact of different graph kernels and different locality sensitive hash function
families on both accuracy and runtime of graph similarity queries with respect to a large graph
database D.

2. We want to examine if the problem (2) can be reduced to problem (1) by considering the database
D as inferred (for example via sampling) from the graph G, and subsequently if the approaches
studied in goal 1 can be translated into approaches for problem (2).

2 Final Report

2.1 Problem description

Recall that our primary statement is as follows. We wish to preprocess a database of graphs D =
{G1, ..., GN} so that given a query graph G, we can return a subset T ⊆ D of the nearest neighbors
Gi to G under some fixed graph distance metric κ. In this study we aim to investigate three metrics in-
duced by graph kernels: Weisfeiler-Lehman subtree kernel of depth h, graphlet kernel for graphlets of
size up to k, and connected graphlet kernels of size up to k.

1

2 FINAL REPORT

Figure 1: An illustration of the two step process for building a hashtable H that stores graph database
D. First, we pick a set of prototypes P, and embed our graphs into Rm via a kernel κ based embedding
Ψ. Next, we perform LSH on the embeddings to construct a hashtable H which consists of T individual
hashtables, each indexed into by B hashes.

The general approach we take for this problem is based on the work of Zhang et al. [7]. The overview
of the main idea is provided in Figure 1. Briefly, the approach proceeds in the following steps:

1. Given the database D of graphs, pick a set of prototypes P = {p1, p2, · · · pm} ⊂ D

2. Define the function Ψ : G → Rm as

Ψ(g) = (κ(g, p1), κ(g, p2), . . . , κ(g, pm))

3. Represent each graph g ∈ D by Ψ(g)

4. Use a family of LSH functions hi, i ∈ {1, ..., B} to insert graph g into the bucket indexed by hi(Ψ(g)),
repeat for all T tables

5. Given a query graph q return the union of all buckets that q is hashed into

6. Filter the returned candidate set C = {c1, ..., cL} to its top-K members via explicit computation of
κ(q, ci)

Thus, we specifically want to investigate if: (a) we can improve the accuracy of the nearest neighbor
retrieval by selecting our prototypes as centroids of the |P| clusters formed under the metric κ in D; (b)
what are the accuracy and search time trade-offs between the three considered kernels (WL, graphlet,
connected graphlet); (c) how do parameters of the actual hash table (table count, hash function count,
range) impact the empirical performance.

2.2 Literature review

In their work [7] Zhang at al. introduce the framework that combines graph kernel computations with
locality sensitive hashing for fast near neighbor search in graph databases. Their key idea relies on
the two step process of first creating an embedding from graph space into Rm and then using locality
sensitive hashing in Rm to efficiently retrieve near neighbors. Authors aimed to approximate graph edit
distance metric, but since graph edit distance computations are too slow, instead they relied on much
faster Weisfeiler-Lehman subtree kernel [6]. However, authors did not provide any specific way for picking
prototype set within the database, which motivates a part of our study.

2/10

2 FINAL REPORT

The original paper that proposes using modified version of Weisfeiler-Lehman isomorphism test as a
graph kernel [6] motivates it’s contribution, as a computationally efficient alternative to the graph edit
distance. Authors provide a mathematical argument for why WL-kernel efficiently approximates the
graph edit distance, and provide two algorithms for efficient single pair kernel computation and bulk
pairwise kernel computation.

Additionally, there have been other graph kernels proposed that combine efficient computation with
good approximation of the graph edit distance metric. In particular, the graphlet based kernels have
been proposed [5, 4] as a way of estimating similarity in the graph space. Since, the original paper
we considered, only looked at WL-kernels, we have been interested in exploring graphlet kernels as an
alternative approach for the same problem, in order to evaluate their computational performance.

2.3 Experimental results

Key hypothesis: An optimized selection of prototype graphs at the preprocessing stage, can improve the accuracy
of nearest neighbor search in graph space.

We have used the Weisfeiler-Lehman (WL) kernel for our experiments, as suggested by the authors
of [7]. We follow the method from [7]. We investigate how tuning the number of hash functions K, range
of each hashtable R and the number of tables T affect the performance of this data structure.

In [7], a specific form of LSH is used that is based on the p-stable distributions [8]. We implement the
LSH family that they prescribe.

To analyze the performance of our algorithm, we query our database with a graph g randomly picked
from D itself. Then, we also pick the graphs from D which are truly similar to g based on the value of
the kernel itself. Then, we check the size of this intersection. Our aim is to maximize the size of this
intersection as a ratio of the total number of neighbors queried for.

For computing kernels of these graphs, we use the graphkernels library which represents graph as
igraph objects.

For our experiments, we use the NCI1 and NCI-H23 databases that were downloaded from https://
ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets. NCI1 has 4110 graphs with mean
vertex count of 30 and mean edge count of 28. NCI-H23 has 40353 graphs with mean vertex count of 26
and mean edge count of 28.

For all experiments we have fixed the depth for WL kernel computation to h = 10 for the hash table
building stage, and increased it to h = 60 for the evaluation stage. Thus, the ground truth set of top-50
nearest neighbors is computed with higher precision than the one used for deciding candidate set from
the hash table.

In the first set of experiments we have selected 300 random graphs from our dataset to serve as pro-
totypes, and 500 random graphs from the dataset to serve as query graphs. For each query we have
computed it’s true top-50 neighbors under the WL kernel (h = 60). We then proceeded to vary the num-
ber of hashtables used T, number of hash functions per table B, the weight parameter W of the LSH
function, and the number of top hits to be returned from candidate set K. For each set of parameters we
have computed the average proportion of reported top-K hits from the candidate set that are present in
the true top-50 set for this query. Additionally we report average time per 500 queries to our hashtable.

3/10

https://github.com/BorgwardtLab/GraphKernels
https://igraph.org
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

2 FINAL REPORT

Figure 2: Performance of WL Kernel + LSH based hashtable for NCI1 data

4/10

2 FINAL REPORT

Figure 3: Performance of WL Kernel + LSH based hashtable for NCI-H23 data

5/10

2 FINAL REPORT

No. of tables
No. of hashes 5 10 20 30 40 50

1 86.90s 103.94s 140.43s 178.80s 207.98s 248.72s
5 272.21s 377.29s 573.05s 757.69s 961.83s 1125.76s

10 535.59s 688.94s 1046.69s 1371.27s 1767.09s 2177.06s
20 905.69s 1327.08s 2048.34s 2744.13s 3422.81s 4220.89s

Table 1: Time per 500 queries for the NCI1 dataset.

No. of tables
No. of hashes 5 10 20 30 40 50

1 596.12s 668.54s 651.45s 701.62s 629.90s 700.56s
5 1848.05s 2181.73s 2223.67s 2437.88s 2726.57s 2993.99s

10 3945.37s 3785.79s 4063.03s 4634.10s 5047.63s 5652.16s
20 6682.92s 6756.61s 7860.36s 8760.91s 9293.99s 9566.74s

Table 2: Time per 500 queries for the NCI-H23 dataset.

Additionally, we have evaluated two extensions of the initial experimental setup. Namely, we consid-
ered a varying number of prototype graphs p which took values 50, 100, 200, 300 and 500, and we also
compared the performance obtained by applying spectral clustering to the data and picking prototypes as
graphs closest to the inferred cluster centroids.

We observe that with the increase of the number of prototypes used the overall performance of our
hashtable degrades (Fig. 4). Additionally, we note that contrary to our hypothesis choosing near-centroids
of clusters decreases the performance of our algorithm. We have conjectured two possible causes of
this phenomenon: (1) Since the size of the NCI1 dataset is on the scale of ∼4,000 graphs it is possible
that oversampling the prototypes can introduce too much bias into the embedding function; (2) Spectral
clustering tends to produce even sized clusters, which might bias sampling towards dense regions of the
graph space, and skewing the embedding.

To test the frst hypothesis we have performed a similar evaluation on the NCI-H23 dataset which
contains 10 times more graphs that NCI1 dataset.

We note that the general trend of decreased performance with higher number of prototypes holds for
the NCI-H23 dataset (Fig. 5). However, the absolute impact of the increased number of prototypes is
lower than in the NCI-H23 case, suggesting that hypothesis (1) might hold partially. Additionally, we also
note that similarly to the NCI1 dataset we get on average worse performance from employing a clustering
pre-processing step.

To further investigate the reason why performing clustering can lead to worse performance, we have
visualized our randomly selected prototypes and prototypes inferred form cluster centroids by using
WL-kernel based distances, and projecting into 2 dimensional space via tSNE.

We note that at the lower count of prototypes random sampling tends to yield a less biased selection of
prototypes (Fig. 6), while the clustering based method tends to oversample the dense regions of the space.
As the number of prototypes increases both methods tend to select comparably similar sets of prototype
graphs (Fig. 7). Furthermore, the clustering based method tends to better resolve dense clusters once the
total number of prototypes is high enough.

2.4 Conclusion

Thus, we have found that empirically in this scenario clustering pre-processing step yields no observable
advantage, and in fact tends to slightly decrease the performance of the method. We have also observed
that the number of prototype graphs can adversely affect the performance, and therefore needs to be tuned
to the estimated dataset size.

6/10

2 FINAL REPORT

Figure 4: Performance of WL Kernel + LSH based hashtable for NCI1 data for top-25 nearest neighbors.
Results are averaged over the range of W values used for hash functions.

7/10

2 FINAL REPORT

Figure 5: Performance of WL Kernel + LSH based hashtable for NCI-H23 data for top-25 nearest neighbors.
Results are averaged over the range of W values used for hash functions.

(a) Randomly selected prototypes (b) Prototypes as approximate cluster centroids

Figure 6: Selected prototypes (p = 50, purple) visualized against other graphs (yellow) via tSNE based
projection from WL-kernel metric space into R2.

8/10

2 FINAL REPORT

(a) Randomly selected prototypes (b) Prototypes as approximate cluster centroids

Figure 7: Selected prototypes (p = 500, purple) visualized against other graphs (yellow) via tSNE based
projection from WL-kernel metric space into R2.

9/10

REFERENCES

References

[1] Jurgen F. Nijkamp, Mihai Pop, Marcel J. T. Reinders, and Dick de Ridder. Exploring variation-aware
contig graphs for (comparative) metagenomics using marygold. Bioinformatics, 29(22):2826–2834, 2013.

[2] Jay Ghurye, Todd Treangen, Marcus Fedarko, W. Judson Hervey, and Mihai Pop. Metacarvel: linking
assembly graph motifs to biological variants. Genome Biology, 20(1):1–14, 2019.

[3] Swarnendu Ghosh, Nibaran Das, Teresa Gonçalves, Paulo Quaresma, and Mahantapas Kundu. The
journey of graph kernels through two decades. Computer Science Review, 27:88–111, 2018.

[4] Tamás Horváth, Thomas Gärtner, and Stefan Wrobel. Cyclic pattern kernels for predictive graph
mining. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 158–167, 2004.

[5] Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Artificial Intelligence and Statistics, pages
488–495. PMLR, 2009.

[6] Nino Shervashidze and Karsten M Borgwardt. Fast subtree kernels on graphs. In NIPS, pages 1660–
1668, 2009.

[7] Boyu Zhang, Xianglong Liu, and Bo Lang. Fast graph similarity search via locality sensitive hashing.
In Pacific Rim Conference on Multimedia, pages 623–633. Springer, 2015.

[8] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. In Proceedings of the twentieth annual symposium on Computational geom-
etry, pages 253–262, 2004.

10/10

	Abstract
	Final Report
	Problem description
	Literature review
	Experimental results
	Conclusion

